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Genetic algorithms have gained popularity as an effective procedure for obtaining 
solutions to traditionally difficult space mission optimization problems. In this paper, a 
brief  survey of the use of genetic algorithms to solve astrodynamics problems is 
presented and is followed by  new results obtained from applying a Pareto genetic 
algorithm to the optimization of low-thrust interplanetary spacecraft missions . A hybrid 
optimization method  was designed to integrate a Pareto genetic algorithm with a 
calculus-of-variations-based trajectory optimizer. Fronts of Pareto optimal trajectories 
were generated and  novel trajectories identified for both Earth-Mars and Earth-Mercury 
missions. 

INTRODUCTION 

During the last several years, investigators have used genetic algorithms (GAS) to 
optimize various aspects of complex space  missions. These missions are diverse in 
nature and range from trajectory planning for launch  vehicles to the design of 
interplanetary missions. For example, a guidance  method for the ascent trajectory of a 
single stage to low-earth-orbit (LEO) launch  vehicle  has  been developed with the aid of a 
genetic algorithm.' The genetic algorithm was  used to perform the off-line optimization 
of the nominal trajectory. The objective of the optimization was to maximize the 
payload delivered to LEO. A single constraint that enforced the dynamic pressure the 
vehicle experienced during the ascent was applied. Final results were compared with the 
high-fidelity optimization algorithm, Optimal Trajectories Implicit Simulation (OTIS) 
and found to be within 2% of the  OTIS-predicted result. The resulting GA guidance 
method provided good performance, with computational costs lower than traditional 
methods. 

Reference [2] investigated the feasibility of using a genetic algorithm for trajectory 
optimization of  an ascent trajectory from the surface of the  moon. The genetic algorithm 
generates a thrust profile for each trajectory  with  the overall objective to minimize the 
flight time for a given terminal orbit. The GA results were compared with  an analytic 
solution and were also measured against results obtained by a calculus-based 
optimization method.  Both comparisons were favorable. During the study, several local 
optima were found to exist. A hybrid  methodology  was developed where the GA is used 
to determine a nominal trajectory, and  the calculus-based method then optimizes the GA- 
derived solution. The hybrid technique outperformed the GA alone. The study 
concluded that genetic algorithms are a feasible method for trajectory optimization. 
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Another mission  that  GAS have aided  in  mission  planning entails sending spacecraft to 
rendezvous with comets, land  on  their surface and  take  sample^.^ A GA was developed to 
determine a complex set of maneuvers to fly over five candidate landing sites. The 
objective was to minimize the propellant required by the chemical propulsion system 
during the fly-over of the five candidate landing  sites. The maneuvering strategy was 
complicated by the existence of multiple nonlinear  practical constraints. A gradient- 
based algorithm previously developed for the purpose of determining fly-over maneuvers 
was found to be incapable of dealing with  the  posed  problem due to the number of fly- 
over sites and complicated constraints. The GA, however,  was able to provide several 
satisfactory solutions. 

Traditionally, interplanetary space missions  have  employed chemical high-thrust 
propulsion systems to perform the necessary  energy exchanges that are required to 
complete the mission objectives. During  preliminary design, the energy exchange is 
assumed to occur instantaneously so that the optimization process must determine the 
moment  in  time that the engines are activated, and the magnitude and direction of the 
velocity impulse imparted to the spacecraft. A one-way Earth to Mars trajectory was 
studied in Reference [4]  and the associated parameter space was found to be multimodal 
and discontinous. The objective was to minimize the initial mass  in LEO that would 
deliver a 6000 kilogram spacecraft to Mars. The Earth departure date and Mars arrival 
date were allowed to vary. A GA was  successful  in determining a global and several 
locally optimizing solutions. 

The recent shift in  NASA to a philosophy of better, faster, cheaper missions has lead to 
renewed interest in advanced propulsion systems. During October 1998, the first low- 
thrust propulsion interplanetary space mission,  New Millennium Deep Space 1 (DSl), is 
scheduled to be launched. This new  propulsion  system requires a different dynamic 
model than the high-thrust counterpart due to the fact that  the energy exchange imparted 
to the spacecraft occurs over a long period of time. Typically, low-thrust missions 
require the propulsion system to operate for a significant percentage of the entire mission 
length. The resulting optimization problem is complicated by the fact that the magnitude 
and direction of the propulsion system  thrust  is a continuous function of time. Mission 
objectives to be considered include minimizing  the  amount of propellant required to 
perform the mission or minimizing  the entire mission length. References [5-61 used 
macro and micro GAS to determine the magnitude and direction at discrete locations 
along the trajectories. Mission constraints were  enforced as penalties to the objective 
function. Results were shown to closely  match  published results that were determined 
using gradient-based optimization methods. 

Genetic algorithms have also been a useful tool for determining near-optimal low-thrust 
spacecraft trajectories in instances when applying second-order necessary and sufficient 
conditions within a calculus of variations framework fai1.7-8 A simple GA coupled with 
an ordinary differential equation integrator for trajectory  propagation  was used. The  GA 
determined the control parameters for a trajectory, and the system equations of motion 
are propagated forward using  the  integration  routine to determine the final spacecraft 
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state. Fitness was assigned according to the degree that the desired final state was met. 
Terminal constraints were applied  via  appended  penalty functions. 

The remainder of this paper describes an on-going joint research venture being conducted 
by the Jet Propulsion Laboratory (JPL) and  the  University of Illinois at Urbana- 
Champaign’s Computational Astrodynamics Research  Laboratory (UWC CARL). A 
Pareto genetic algorithm is implemented to perform multi-objective optimization for low- 
thrust space missions, expanding the  previous  work of References [5-61 to better meet the 
needs of mission designers. Multi-objective optimization is the optimization of a system 
with more than one objective where  the objectives may  be competing. Development of 
the multi-objective optimization algorithm follows that  described  in Reference [9] and 
allows for the generation of fronts of optimal trajectories offering a variety of options for 
the mission planner. The Pareto genetic algorithm was combined with JPL trajectory 
optimization software and used to study  an  Earth-Mars  and Earth-Mercury mission. 

LOW-THRUST MISSIONS 

In the last several years, there has been  pressure to lower the costs of performing 
planetary missions. One  way to accomplish less-expensive missions is to reduce overall 
mission length thereby  reducing  operational costs. Another  method is to use on-board 
spacecraft propulsion systems that are h’ hly efficient in their use of propellant. These 
propulsion systems use less propellankt T? ere f ore result  in a less massive spacecraft. 
Smaller total spacecraft mass requires smaller launch  vehicles to escape the Earth’s 
gravitational well  and  may reduce total  launch costs since the cost of launch vehicles 
increases with  total  payload  mass  launching capability. Solar electric propulsion (SEP) 
systems are one of the most efficient propulsion systems that are available for 
interplanetary missions. This makes SEP an attractive option for potentially achieving 
lower overall mission costs; however, SEP systems provide a thrust that is relatively 
small, typically on the order of fractions of Newtons. Low-thrust systems have thrusting 
profiles that are characterized by  long  periods  of thrusting and the resulting trajectories 
can be difficult to optimize. This paper describes an  approach to determine optimal 
trajectories for  SEP systems that also provides the capability to minimize or maximize 
several objectives (i.e. flight time, propellant consumed, etc.) A Pareto GA is combined 
with JPL software to perform  the multi-objective optimization. 

PARETO  OPTIMIZATION 

Multi-objective optimization requires determining solutions to a system with more than 
one objective. As  in single-objective optimization, the objective(s) may have any number 
of equality or inequality constraints imposed  upon  them. Equation (1) represen).,the 
multi-objective problem mathematically. 5 

Minimize/Maximize . m >  i = 1,2, ..., N 
Subject to gj (x)  1-0 j = 1,2 ,..., F 

hk(x) =-0 k = 1,2 ,..., K 

3 



Rather than searching for the solution which yields the globally maximal (or minimal) 
value for a single objective, the “best” solution is found by simultaneously optimizing 
several objectives at once. A common  method for handling multiple objectives is to 
combine them into a single scalar objective by averaging each objective and  then 
weighing its influence to the overall objective through a weighting factor. Such reduction 
techniques eliminate the need for a more complex multi-objective algorithm, but 
introduce new parameters in the form of weighting factors. Individual solutions are 
highly sensitive to the magnitudes of these  weighting factors. The user must become 
familiar with  the exact relationship between objectives in order to determine the proper 
weighting values that  will  yield  the  desired  result. Improper assignment of weighting 
factors can result  in a bias towards certain objectives. 

In addition, the result of the optimization will  be a single optimal solution rather than a 
set of optimal solutions that demonstrate the trades  between different objectives. This is 
acceptable for cases in  which  optimality of all objectives coincide in the same solution, 
but  in  most cases where adjustments beneficial  to one objective are detrimental to others, 
such a technique provides only a single point  on  what  may  be  an expansive “front” of 
possible solutions. In the case of GAS, such a formulation fails to take advantage of  the 
population-based nature of the technique. It therefore becomes desirable to develop a 
more robust, multi-objective algorithm, capable of identifying the relationships between 
objectives and able to make better use of the population-based GA to produce sets of 
optimal solutions. 

PARETO  GENETIC  ALGORITHM 

The GAS implemented here uses the standard operators of selection, cross-over and 
mutation. The algorithm devised in this study  is  based  on the concept of nondominated 
sorting originally conceptualized by Goldberg” and  developed by Srinivas and Deb” as 
the Nondominated Sorting Genetic Algorithm  (NSGA). The NSGA  uses the concept of 
nondominance to sort through a population of possible solutions, assigning each member 
to a Pareto optimal “front” according to their level of nondominance. The process 
consists of two iterated steps. The population  is first sorted, and those individuals that 
are nondominated are assigned fitnesses initially equal to the size of the population, 
representing the  maximum  number of fronts possible. After assignment to a front, a 
technique known  as “fitness sharing” or “niching”6 is applied to these individuals. 
Niching adjusts the fitness of neighboring solutions in  an attempt to evenly distribute 
individuals across the Pareto front. After  niching  is implemented, the minimal fitness in 
the current front is determined. This fitness is then  slightly  reduced and used as the 
initial fitness for the next front, and the nondominated sorting process continues until all 
individuals in the population are assigned fitness values. 

The NSGA is not an entirely new algorithm, but  rather a modification to the fitness 
evaluation procedures that exist in standard genetic algorithms. It is in  some sense a 
supplement to the simple genetic algorithm (consisting of reproduction, cross-over and 
mutation) that allows for a more effective means of multi-objective optimization. The 
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method may  be  viewed as an  adaptation  that filters the GA population immediately after 
undergoing fitness evaluation to reorient  the  population for a multi-objective 
optimization. 

Testing  the  Algorithm 
Verification of Performance 
A set of test functions comprised of those found in the literature and of original design 
was used to test the  NSGA.  Six diagnostic test functions in all were used: three 
functions from the Srinivas and  Deb  test  suite"  to test replication of performance, along 
with three new functions designed to test  previously  undemonstrated capabilities required 
for the trajectory optimization work  in  this study. The algorithm developed by the 
authors, although based upon the original NSGA,  is  not a replica. Two differences are 
the substitution of the stochastic remainder selection scheme with stochastic universal 
selection and  the use of a sharing scheme implementing normalized parameters. In order 
to facilitate comparison, values for main control parameters were assigned the same 
values as those used  in %Reference [ 1 11. 

Test Functions 
The NSGA algorithm developed in this paper  was tested against several test functions. 
First, the results using  the three test functions considered in Reference [ 1 11 were 
reproduced and can be found in Reference [ 121. These functions all involve two 
objectives. The first two possess one independent variable with  no constraints, while the 
third utilizes two independent variables  with  two constraints. These three functions 
demonstrate the NSGA's ability to optimize functions with  two objectives at most, each 
being strictly minimized; however  the algorithm is capable of optimizing for any number 
of objectives, regardless of whether  each  individual objective is of minimizing or 
maximizing type." Three additional  test functions were  devised to confirm these 
capabilities. 

The first of these additional functions maintains  two  slightly  out of phase sinusoids as 
objectives. The resulting function possesses four regions of Pareto optimality, and 
enables the examination of the algorithm's ability to maintain  more  than  two 
subpopulations of Pareto optimal individuals. The problem is defined mathematically as, 

Minimizehlaximize: 

Furthermore, by varying  which objective is  maximized for optimality and which is 
minimized, the NSGA's ability to handle combinations of optimization types  was 
investigated. The NSGA  was  successful  at identifying the Pareto regions for all four 
permutations. Figure 1 demonstrates the results where f,, is maximized  and f,, is 
minimized. For each value of x,  the corresponding values for f,, and f,, are shown, where 
a circle is used for f,, and a diamond for f,,. 

5 



The second supplemental function has the purpose of verifying the NSGA’s ability to 
handle more than two objectives. It  was established that, for the purposes of the initial 
trajectory optimization study, no  more  than four objectives would be required and the 
following functions are designed to test this extended capability. 

This set of functions results in four parabolic objectives, whose Pareto optimal region lies 
within the square defined by their vertices. Figure 2 illustrates that the NSGA clearly 
identified the Pareto region. 

The final test adds  two constraints to the previous set of functions displayed in Equation 
(3) .  The two constraints applied  were similar to those  applied  in test functions in 
Reference [ 1 11. Individuals are constrained to reside  within  the circle and above the line 
given by: 

Constraints: ( X I  - 1.67) + (x2 - 0.5) - 1 < 0 2 2 

X 2  - 0.5X1 > 0 

As  in Reference [ 1 13, the constraints were  applied  via a penalty function appended to 
each objective. The algorithm possessed  the  ability to again correctly identify the Pareto 
optimal region, despite the added constraints as is shown  in Figure 3. The control 
parameters used for each function are listed  in Table 1.  In  each case, the normalized 
value of oshare was determined based  on  the  methodology outlined in Reference [ 131. 

Table 1. Parameters for Test  Function Pareto GA Runs 

Control Parameter F1  F2 F3 
Maximum Generation 
Population Size 
String Length 
Probability of crossover 
Probability of mutation 
(Jshare 
a 
Number of parameters 
Number of objectives 
Number af constraints 

500 
100 
28 
1 .o 
0.0 

0.002 
2.0 
1 
2 
0 

500 
100 
30 
1 .o 
0.0 

0.035 
2.0 
2 
4 
0 

100 
100 
30 
1 .o 
0.0 

0.018 
2.0 
2 
4 
2 
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HYBRID  OPTIMIZATION  METHOD:  NSGA+SEPTOP 

The algorithm formulated for determining optimal low-thrust trajectories combines the 
NSGA with  the JPL calculus-of-variations-based optimizer, SEPTOP. The NSGA is 
used as a driver for the SEPTOP software which automates the optimization process by 
acting as a kind of “smart” user. 

SEPTOP (Solar Electric Propulsion Trajectory  Optimization Program) is a preliminary 
mission planning tool  that  uses a two-body, Sun-centered, low-thrust solar-electric 
propulsion m0de1.l~ Classical Calculus-Of-Variations (COV) is used to obtain a 
maximum final mass resulting in a Two-Point-Boundary  Value Problem (TPBVP). The 
user is required to provide initial estimates for costates (Lagrange multipliers) and the 
state and costate differential equations are integrated forward in time. Terminal 
constraints on the states and costates that  result from the COV formulation must  be 
satisfied. The convergence of SEPTOP to an optimal trajectory  can  be  highly dependent 
on the user’s initial guess and  the relative difficulty of the  mission. As the number of 
intermediate planetary flybys and total number of revolutions about the sun increases, the 
user’s initial guess must  move closer to their converged values for the TPBVP to 
successfully converge. 

The NSGA evolves populations of individuals representing possible trajectories, with 
input parameters for SEPTOP being encoded as  each individual’s genotype (current 
values of the independent variables.) These input parameters include the costate values 
associated with a given trajectory, as  well as the  total time of flight. Individual fitness is 
evaluated through a call to SEPTOP using  the  input  parameters encoded within. 
SEPTOP is  run for a set number of iterations, effectively executing a localized search for 
each member in  an attempt to better identify  any  basins  of attraction that  might exist in 
the individual’s immediate vicinity. The  improved fitness - if any improvement was  seen 
- is returned to NSGA in the form of  an objective vector containing the  values for each 
objective in the multi-objective optimization. The individual is thus assigned a new 
phenotype (cost). The new SEPTOP input  parameters associated with  the improved 
solution are not returned as the individual’s new parameter set, i.e. genotype. This is 
done in  an attempt to maintain a greater amount of diversity  in the population’s gene 
pool. 

Within this structure, the SEPTOP software is  programmed to return the following four 
parameters; mass delivered, time of flight, number of heliocentric revolutions, and 
SEPTOP convergence error. Three of the parameters (mass delivered, time of flight, and 
number of heliocentric revolutions) are treated as objectives and  the fourth (SEPTOP 
convergence error) as a constraint. The trade relationship between two of the objectives 
(mass delivered to the destination planet  and  time of flight.) is to be examined. A third 
criteria of  maximizing heliocentric revolutions is employed as a strategy for obtaining 
viable solutions and is explained in detail in Reference [9]. Population members are also 
constrained through user-specification on  the  number of revolutions about the Sun. The 
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two constraints are applied at  the end of the evaluation procedure using appended penalty 
terms. 

NEW RESULTS 

Multiple interesting Earth-Mars and Earth-Mercury  rendezvous missions have been 
determined using the  hybrid optimization tool. The control parameters used  in each case 
are listed in Table 2. Selection and crossover operators were implemented with no 
mutation as  was done for the test functions. Niching parameters were calculated based 
upon the methods provided Reference [ 131. The induced number of niches was set to 15 
-- the same value proportional to population size as in  the test functions. Existing 
methodologies for establishing oshare are only  rough guides however, since they require 
knowledge of the search space for each optimization problem a priori. Guidance for 
population sizing and  maximum  generation determination for hybridized methods was 
found to be nonexistent at  the  time of this study, therefore population sizing and number 
of generations were determined mainly  based  on computer processor limitations. A mid- 
range performing launch  vehicle, the Delta I1 7925, was used for both test cases along 
with a single 30 cm xenon engine for spacecraft propulsion. A 5.2 kW solar array was 
used for the Mars mission and a 5.0 kW array for the  Mercury mission. The output 
reference power is that produced by the  arrays at one astronomical unit, the mean 
distance of the Earth from the Sun. 

Table 2. Parameters for Pareto  Trajectory  Optimizations 

Control Parameter Parameter Value 
Population Size 150 
String Length 80 
Probability of crossover 1 .o 
Probability of mutation 0.0 

a 2.0 
Number of parameters 8 
Number of objectives 3 
Number of constraints 2 

oshare 0.033 

Earth-Mars Rendezvous 
The first set of results is for Earth-Mars rendezvous trajectories. Figure 4 illustrates the 
population of converged Pareto optimal trajectories at  generation  30.  In this case, 91 of 
the 150 population members are nondominated. Trajectories were restricted to 0.5 to 3.0 
heliocentric revolutions, flight time  bound  between  approximately 10 months and 3.5 
years, and launch date again fixed at September 1,2005. Converged Pareto optimal 
trajectories are indicated with  an X. Solutions with  trajectory  plots that will be described 
later are labeled by individual number. 

Two distinct groupings of Pareto optimal individuals were identified and are defined by 
curves in Figure 4. Figure 5 reveals the largest and  most  evenly distributed family in the 
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Pareto space - bound by individuals 44 and 36 - to be the largely dominating subgroup. 
Beginning with individual 44 (Fig. 6) from the largest family  with a delivery  mass of 
685.28 kg, performance increases rapidly  with increasing transfer time. This 
performance plateaus as a coast arc appears  in  the trajectories neighboring individual 73, 
and delivery masses  reach  approximately 862 kg. As is the case for all trajectory plots to 
follow, solid line segments represent thrusting arcs, and  dashed line segments coast arcs. 
Only  very small improvements in  mass delivered are seen  on  the section of the curve 
between individuals 73 and 72. A second coast arc appears producing a burn-coast-burn- 
coast sequence for these solutions.  In  the  vicinity of individual 72, an additional burn is 
appended creating burn-coast-burn-coast-burn trajectories and performance again rises. 
Performance for this subgroup of solutions approaches its maximum  as trajectories 
transition back to a burn-coast-burn structure at individual 36 with a mass delivered of 
884.10. 

The small front of solutions whose  population  resides  between individuals 132 and 22 is 
also worthy of discussion due to the  high performance and  novel trajectory structure (Fig. 
7) that are characteristic of its members. These solutions begin by taking an inward 
direction and spend some time  performing heliocentric revolutions within or just outside 
of Earth orbit before spiraling out to Mars. In these subjects, two revolutions are made to 
increase the spacecraft’s orbit inclination to more  closely  match that of  Mars’ before the 
trajectory progresses outward. A significant increase in performance is seen as flight 
times increase. The minimum  mass  delivered for this subset of the population is 773.33 
kg (individual 132) with a maximum of 91 1.78 (individual  22) - the highest payload 
delivery in the population. 

Earth-Mars Rendezvous On-Demand 

The high performance obtained by members of this Pareto family of novel solutions 
prompted further investigation into the  potential of such a trajectory class. The control 
parameters for the trajectory with  the  highest performance (individual 22 with 91 1.78 kg) 
were extracted, and the SEPTOP software run to compute the performance over a range 
of launch dates spanning approximately  one  Martian synodic period. A synodic period is 
the length of time that must elapse before the relative geometry  between  two planets 
repeats and is 778 days for the planets Earth  and  Mars. For purposes of comparison, the 
same control parameters were also used to generate series of trajectories over the same 
range of launch dates with transfer times of 1.5,2.5, and 3.0 years. 

Results of this analysis are summarized  in  Fig. 8. The dashed curves in  the figure 
represent multiple revolution SEPTOP solutions (2 and 3 revolutions) possessing flight 
times ranging from 2.5 to 3.55 years. The solid curve provides a comparison with a more 
typical SEPTOP solution: 1.5 years and less than 1 heliocentric revolution. These curves 
reveal a continuous period of launch  dates for a flight time of 3.55 years, all with final 
spacecraft mass greater than 900 kg. Shorter flight times with  very large (but not 
continuous) launch  periods are also available, such  as the 2.5 year curve which has a 
launch period close to one year  with performance greater than 900 kg. 
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Earth-Mercury Rendezvous 

The second case considered involves an  Earth-Mercury  rendezvous trajectory with 
multiple revolutions. Desired trajectories were constrained to be  between  3.5 to 6.0 
heliocentric revolutions and the launch date was set at May 3 1,2003. Using a population 
of 150,62 solutions were determined. The solutions broke into two  major fronts and can 
be seen in Figure 9. One front is bound by individuals 15 and 45 and the second by 
individuals 38  and  19. Figure 10 illustrates the trajectories delivering the greatest payload 
to Mercury for the two fronts. For individual 19,  the initial mass of the spacecraft is 968 
kg and the delivered mass  is 584 kg. Individual 45 has an initial mass of 765 kg and 
delivers a spacecraft mass of 484. The Pareto regions identified in this trial are more 
sparsely populated than  in the previous case due to the increased difficulty of the mission. 
Allowing the hybrid algorithm to run for additional generations (30 were used in this run) 
might aid to fill out the fronts. 

Earth-Mercury Rendezvous Availability 

The two higher performing individuals (19 and 45) in each front were investigated further 
to determine if these trajectories could produce  good performance for large ranges of 
launch dates. The period of interest is an  Earth-Mercury  synodic period, which is 116 

"+ days. Figure 1 1  displays the results for four different cases. Two are based  on individual 
19 but  with total mission lengths of 2.25  and 2.0 years  and  two are based  on individual 45 
but with flight times of 1.75 and 2.0 years. The performance of the cases based  on 
individual 45 was similar for the launch dates between  mid-June to mid-July. For launch 
dates proceeding these few months, the 2.0 year flight time outperforms the 1.75 year 
trajectories. A similar trend is found for the  two cases based  on individual 19 where 
there are launch dates where  the performance of  both flight times only  varies  by a few 
kilograms and these dates are proceeded by months  where the 2.25 year trajectories 
outperform the 2.0 year missions. An interesting observation is that by combining the 
results of individual 45 and  19 for the 2.0 year flight time, a relatively flat performance is 
achieved over the entire synodic period. Also, individual 19 offers higher consistent 
performance with the 2.25  year flight time  but  at  the cost of a longer missions. By 
identifying multiple solutions, the hybrid technique has  produced missions that are 
readily available. 

CONCLUSIONS 

A Pareto genetic algorithm was  combined  with a calculus-of-variations optimization 
algorithm and proved  an effective method for generating sets of optimal interplanetary 
trajectories. Fronts of optimal trajectories were  generated for an Earth-Mars and Earth- 
Mercury mission. In  both cases, novel trajectories were found by the hybrid method and 
offered interesting options to the mission designer. 
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Figure 3. Test Function F3 at Generation 100 
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